Vari Medical Academy Model Question Paper:

SECTION-A: 51 TO 85 WRITE ALL THE QUESTIONS

SECTION-B:86 TO 100 WRITE ANY TEN QUESTIONS

51. The IUPAC name of the compound

a) 3,3-dimethyl-1-hydroxy cyclohexane
b) 1,1-dimethyl-3-hydroxy cyclohexane
c) 3,3-dimethy-1- cyclohexanol
d) 1,1-dimethyl-3-cyclohexanol
52. The addition reaction among the following is
a)

b)

c)

d) All of the above
53. Racemic compound has
a) Equimolar mixture of enantiomers
b) 1:1 mixture of enantiomer and diastereomer
c) 1:1 mixture of diastereomers
d) 1:2 mixture of enantiomers
54. The following compound will undergo electrophilic substitution more readily than benzene
a) Nitrobenzene
b) Benzoic acid
c) Benzaldehyde
d) Phenol
55. Which of the following represents the given mode of hybridization $s p^{2}-s p^{2}-s p-s p$ from left to right?
a) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
b) $H C \equiv C-C \equiv N$
c) $\mathrm{CH}_{2}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$
d)

56. Which of the following applies in the reaction $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}$ Alco. $\mathrm{KOH} \rightarrow$?
(I) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ (Major product)
(II) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ (Minor product)
a) Hofmann's rule
b) Saytzeff's rule
c) Kharasch effect
d) Markownikoff's rule
57. Carbon and hydrogen are estimated in organic compounds by
a) Kjeldalhl's method
b) Duma's method
c) Leibig's method
d) Carius method
58. Which of the following aromatic acid is most acidic?
a)

b)

c)

d)

59. The IUPAC name of

a) 1,1-diethyl1-2, 2-dimethylpentane
b) 4,4-dimethyl-5,5-diethylpentane
c) 5,5-diethyl-4,4-dimethylpentane
d) 3-ethyl-4,4-dimethylheptane
60. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}+$ aq. $\mathrm{NaOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaCl}$; this reaction is
a) Electrophilic substitution of I order
b) Electrophilic substitution of II order
c) Nucleophilic substitution of I order
d) Nucleophilic substitution of II order
61. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ are the example of
a) Chain isomerism
b) Functional isomerism
c) Position isomerism
d) Metamerism
62. The alkyl halide that undergoes $S_{N} 1$ reaction more radily is
a) Ethyl bromide
b) Isopropyl bromide
c) Vinyl bromide
d) n-propyl bromide
63. Arrange the following carbocations in order of stability

benzyl	allyl	methyl	vinyl
I	II	III	IV

a) IV $>$ III $>$ II $>$ I
b) I $>$ II $>$ III $>$ IV
c) II $>$ IV $>$ III $>$ I
d) III $>$ II $>$ I $>$ IV
64. Consider the following reaction

Is an example of
a) Substitution
b) Elimination
c) Addition
d) Addition elimination
65. A saturated solution prepared by dissolved $\mathrm{CaF}_{2}(s)$ in water, has $\left[\mathrm{Ca}^{2+}\right]=3.3 \times 10^{-4} \mathrm{M}$. What is the $K_{s p}$ of $C a F_{2}$?
a) 1.44×10^{-10}
b) 2.24×10^{-8}
c) 1.58×10^{-8}
d) 1.67×10^{-8}
66. The solubility in water of a sparingly soluble salt $A_{2} B$ is $1.0 \times 10^{-3} \mathrm{~mol}^{-1}$. Its solubility product will be
a) 4×10^{-9}
b) 4×10^{9}
c) 1×10^{9}
d) 1×10^{-9}
67. 15 moles of H_{2} and 5.2 moles of I_{2} are mixed and allowed to attain equilibrium at $500^{\circ} \mathrm{C}$. At equilibrium, the concentration of $H I$ is found to be 10 moles. The equilibrium constant for the formation of HI is
a) 50
b) 15
c) 100
d) 25
68. Consider the following gaseous equilibria with equilibrium constants K_{1} and K_{2} respectively.

$$
\begin{aligned}
\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g) \\
2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)
\end{aligned}
$$

The equilibrium constants are related as
a) $2 K_{1}=K_{2}^{2}$
b) $K_{1}^{2}=\frac{1}{K_{2}}$
c) $K_{2}^{2}=\frac{1}{K_{1}}$
d) $K_{2}=\frac{2}{K_{1}^{2}}$
69. The $p K_{a}$ of a weak acid, $\mathrm{H} A$, is 4.80. The $p K_{b}$ of a weak base, $B O H$ is 4.78 . The pH of an aqueous solution of the corresponding salt, $B A$, will be
a) 9.58
b) 4.79
c) 7.01
d) 9.22
70. For the reaction $N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) ; \quad \Delta H=-93.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the concentration of NH_{3} at equilibrium can be increased by
(I) lowering the temperature
(II)low pressure
(III) excess of N_{2}
(IV) excess of H_{2}
a) (II) and (IV) are correct
b) (II) only is correct
c) (I), (II) and (III) are correct
d) (III) and (IV) are correct
71. According to law of mass action, for the reaction
$2 A+B \rightarrow$ Products
a) Rate $=k[A][B]$
${ }^{\text {b) }}$ Rate $=k[A]^{2}[B]$
c) Rate $=k[A][B]^{2}$
d) Rate $=k[A]^{1 / 2}[B]$
72. Conjugate acid of $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$ is
a) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $\mathrm{HS}_{2} \mathrm{O}_{8}^{-}$
d) HSO_{4}^{-}
73. 4 moles each of SO_{2} and O_{2} gases are allowed to react to form SO_{3} in a closed vessel. At equilibrium 25% of O_{2} is used up. The total number of moles of all the gases at equilibrium is
a) 6.5
b) 7.0
c) 8.0
d) 2.0
74. The expression for the solubility product of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
a) $K_{s p}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
b) $K_{s p}=\left[A l^{3+}\right]^{2}\left[S O_{4}^{2-}\right]^{3}$
c) $K_{s p}=\left[\mathrm{Al}^{3+}\right]^{3}\left[\mathrm{SO}_{4}^{2-}\right]^{2}$
d) $K_{s p}=\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right]^{2}$
75. In the reactions, $A+2 B \rightleftharpoons 2 C$, if 2 moles of $A, 3.0$ moles of B and 2.0 moles of C are placed in a 2 L flask and the equilibrium concentration of C is $0.5 \mathrm{~mol} / \mathrm{L}$, the equilibrium constant $\left(K_{c}\right)$ for the reactions is
a) 0.21
b) 0.50
c) 0.75
d) 0.025
76. $\quad 9.2 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$ is heated in a 1 L vessel till equilibrium state is established

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

In equilibrium state $50 \% N_{2} \mathrm{O}_{4}$ was dissociated, Equilibrium constant will be (mol. wt. of $N_{2} O_{4}=92$)
a) 0.1
b) 0.4
c) 0.3
d) 0.2
77. ΔE° of combustion of isobutylene is $-x \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of ΔH° is
a) $=\Delta E^{\circ}$
b) $>\Delta E^{\circ}$
c) $=0$
d) $<\Delta E^{\circ}$
78. The enthalpy change for the transition of liquid water to steam is $\Delta H_{v a p}=37.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 373 K . The entropy change for the process is
a) $132.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
b) $100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
c) $135.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
d) $75.5 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
79. A gas can expand from 100 mL to 250 mL under a constant pressure of 2 atm . The work done by gas is
a) 30.38 J
b) 25 J
c) 5 kg J
d) 16 J
80. Based on the first law of thermodynamics, which one of the following is correct?
a) For an isochoric process $=\Delta E=-Q$
${ }^{\text {b) }}$ For an adiabatic process $=\Delta E=-W$
c) For an isothermal process $=Q=+W$
${ }^{\text {d) }}$ For a cyclic process $=Q=-W$
81. Mark out the enthalphy of formation of carbon monoxide (CO)

Given, $C(s)+\mathrm{O}_{2}(g) \rightarrow C O(g), \Delta H=-393.3 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-282.8 \mathrm{~kJ} / \mathrm{mol}$
a) $110.5 \mathrm{~kJ} / \mathrm{mol}$
b) $676.1 \mathrm{~kJ} / \mathrm{mol}$
c) $282.8 \mathrm{~kJ} / \mathrm{mol}$
d) $300.0 \mathrm{~kJ} / \mathrm{mol}$
82. An ideal gas expands in volume from $1 \times 10^{-3} \mathrm{~m}^{3}$ to $1 \times 10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $1 \times 10^{5} \mathrm{Nm}^{-2}$. The work done is
a) -900 J
b) -900 kJ
c) 270 kJ
d) 900 kJ
83. In a closed insulated container, a liquid is stirred with a paddle to increase its temperature. In this process, which of the following is true
a) $\Delta E=W \neq 0, Q=0$
b) $\Delta E \neq 0, Q=W=0$
c) $\Delta E=W=Q=0$
d) $\Delta E=0, Q \neq 0, W=0$
84. In an isochoric process, the increase in internal energy is
a) Equal to the heat absorbed
b) Equal to the heat evolved
c) Equal to the work done
d) Equal to the sum of the heat adsorbed and work done
85. Which is an extensive property?
a) Temperature
b) Chemical potential
c) Gibb's free energy
d) Molar volume
86. In an irreversible process taking place at constant T and P and in which only pressure volume work is being done, the change in Gibbs free energy $(d G)$ and change in entropy
a) $(d S)_{V, E}<0(d G)_{T, P}<0$
b) $(d S)_{V, E}>0(d G)_{T, P}<0$
c) $(d S)_{V, E}>0(d G)_{T, P}=0$
d) $(d S)_{V, E}=0(d G)_{T, P}>0$
87. Which of the following conditions will always lead to a non-spontaneous change?
a) Positive ΔH and positive ΔS
b) Negative ΔH and negative ΔS
c) Positive ΔH and negative ΔS
${ }^{\text {d) }}$ Negative ΔS and positive ΔS
88. The bond dissociation energies of gaseous H_{2}, Cl_{2} and HClare 104, 58 and 103 kcal respectively. The enthalpy of formation of HClgas would be
a) -44 kcal
b) 44 kcal
c) -22 kcal
d) 22 kcal
89. A solid has structure in which ' W ' atoms are located at the corners of a cubic lattice ' 0 ' atoms at the centre of edge and Na atoms at the centre of cube. The formula for the compound is
a) $\mathrm{Na}_{2} \mathrm{WO}_{3}$
b) $\mathrm{Na}_{2} \mathrm{WO}_{2}$
c) NaWO_{2}
d) NaWO_{3}
90. Graphite is a
a) Molecular solid
b) Covalent solid
c) Ionic solid
d) Metallic solid
91. In $C s C l$ type structure the coordination number of $C s^{+}$and $C l^{-}$are
a) 6,6
b) 6,8
c) 8,8
d) 8,6
92. The edge length of a face centred cubic cell of an ionic substance is 508 pm . If the radius of the cation is 110 pm , the radius of the anions is
a) 288 pm
b) 398 pm
c) 618 pm
d) 144 pm
93. A compound of ' A ' and ' B ' crystallises in a cubic lattice in which ' A ' atoms occupy the lattice points at the corners of the cube. The ' B ' atoms occupy the centre of each face of the cube. The probable empirical formula of the compound is
a) $A B_{2}$
b) $A_{3} B$
c) $A B$
d) $A B_{3}$
94. In a solid lattice, the cation has left a lattice site and is located at an interstitial position, the lattice defect is
a) Frenkel defect
b) Schottky defect
c) F-centre defect
d) Valency defect
95. The axial angles in triclinic crystal system are
a) $\alpha=\beta=\gamma=90^{\circ}$
b) $\alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$
c) $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
d) $\alpha=\beta=\gamma \neq 90^{\circ}$
96. The radii of Na^{+}and Cl^{-}ions are 95 pm and 181 pm respectively. The edge length of NaCl unit cell is
a) 276 pm
b) 138 pm
c) 552 pm
d) 415 pm
97. The cubic unit cell of Al (molar mass $27 \mathrm{~g} \mathrm{~mol}^{-1}$) has an edge length of 405 pm . Its density is $2.7 \mathrm{~g} \mathrm{~cm}^{-3}$. The cubic unit cell is
a) Face centred
b) Body centred
c) Primitive
d) Edge centred
98. If the radius of K^{+}and F^{-}are 133 pm and 136 pm respectively, the distance between K^{+}and F^{-}in $K F$ is
a) 269 pm
b) 134.5 pm
c) 136 pm
d) 3 pm
99. Percentage of free space in cubic close packed structure and in body centred packed structure are respectively
a) 30% and 26%
b) 26% and 32%
c) 32% and 48%
d) 48% and 26%
100. A solid is made of two elements X and Z. The atoms Z are in $c c p$ arrangement while the atom X occupy all the tetrahedral sites. What is the formula of the compound?
a) $X Z$
b) $X Z_{2}$
c) $X_{2} Z$
d) $X_{2} Z_{3}$

ANSWER KEY:

51	C	61	B	71	B	81	A	91	C
52	B	62	C	72	C	82	A	92	D
53	A	63	B	73	A	83	A	93	D
54	D	64	D	74	B	84	A	94	A
55	A	65	A	75	A	85	C	95	C
56	B	66	A	76	D	86	B	96	C
57	C	67	A	77	D	87	C	97	A
58	B	68	B	78	B	88	C	98	A
59	D	69	C	79	A	89	D	99	B
60	D	70	C	80	D	90	B	100	C

